If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4q^2+12q+9=0
a = 4; b = 12; c = +9;
Δ = b2-4ac
Δ = 122-4·4·9
Δ = 0
Delta is equal to zero, so there is only one solution to the equation
Stosujemy wzór:$q=\frac{-b}{2a}=\frac{-12}{8}=-1+1/2$
| -11+2=-3(x+2) | | 13x+2=3x-4 | | 3(2x-4)=4(3x2) | | 5x+6-2x=-3 | | 5x-9=3x+10 | | 7.65-q=1.66 | | x-8+5=6 | | 4(1-5m)=-116 | | 5.4=2(f+1.2) | | -4=2x^ | | 5(-6.1+4.8x)=-3/2(-16x+20) | | y/6=6-(-1) | | 9x+42=3x+18 | | -15+2x=5-3x | | -2•(-5y)=39 | | 1/3h=1/6 | | -28(f+148)=-224 | | 6x-1+6×=11 | | x²+12x=13 | | -4=2x² | | -2•(-5)-5y=30 | | 6×-1+6x=11 | | 12=3x+4+5x | | 4(b-76)=80 | | -4=-2x² | | 72+10x=162 | | 8y-18=3 | | 3x=4x+-2 | | 1.6(h+2)=4.8 | | 12/17+x=3 | | (14/y-7)-(2/y)=(19y+7)/(y^2-49) | | 1/6(36-54n)=1/3(-27n+18) |